新疆25选7走势 > 工业控制 > 正文

新疆福利25选7:MOSFET电容在LLC串联谐振电路中的作用

2018年07月12日 10:58 ? 次阅读

新疆25选7走势 www.ve66b.cn LLC的优势之一就是能够在比较宽的负载范围内实现原边MOSFET的零电压开通(ZVS),MOSFET的开通损耗理论上就降为零了。要保证LLC原边MOSFET的ZVS,需要满足以下三个基本条件:

1)上下开关管50%占空比,1800对称的驱动电压波形;

2)感性谐振腔并有足够的感性电流;

3)要有足够的死区时间维持ZVS。

??????? 【LLC众筹】史上最全张飞半桥LLC谐振开关电源教程!众筹最后6天 >点此立即参与<

图a)是典型的LLC串联谐振电路。图b)是感性负载下MOSFET的工作波形。由于感性负载下,电流相位上会超前电压,因此保证了MOSFET运行的ZVS。要保证MOSFET运行在感性区,谐振电感上的谐振电流必须足够大,以确保MOSFET源漏间等效的寄生电容上存储的电荷可以在死区时间内被完全释放干净。

MOSFET电容在LLC串联谐振电路中的作用

当原边的MOSFET都处于关断状态时,串联谐振电路中的谐振电流会对开关管MOSFET的等效输出电容进行充放电。MOSFET都关断时的等效电路如下图所示:

MOSFET电容在LLC串联谐振电路中的作用

通过对上图的分析,可以得出需要满足ZVS的两个必要条件,如下:

MOSFET电容在LLC串联谐振电路中的作用

公式看上去虽然简单,然而一个关于MOSFET等效输出电容Ceq的实际情况,就是MOSFET的等效寄生电容是源漏极电压Vds的函数,之前的文章对于MOSFET的等效寄生电容进行过详细的理论和实际介绍。,也就是说,等效电容值的大小会随着Vds的变化而变化。如下图所示,以Infineon的IPP60R190P6为例:

MOSFET电容在LLC串联谐振电路中的作用

LLC串联谐振电路MOSFET的Vds放电过程分为四个阶段,如下图所示, (I) 380V-300V; (II) 300V-200V; (III) 200V-100V; (IV)100V-0V。

MOSFET电容在LLC串联谐振电路中的作用

从图中可以看出,(I)和(IV)两部分占据了Vds放电时间的将近2/3,此时谐振腔的电感电流基本不变。这两部分之所以占据了Vds放电的大部分时间,主要原因在于当Vds下降到接近于0的时候,MOFET源漏间的寄生电容Coss会指数的增加。因此要完全释放掉这一部分的电荷,需要更长的LLC谐振周期和释放时间。

因此选择合适的MOSFET(足够小的等效寄生电容),对于ZVS的实现至关重要,尤其是当Vds接近于0的时候,等效输出电容要足够小,这样还可以进一步降低死区时间并提高LLC的工作效率。

下图进一步说明如何选择合适的ZVS方案。

MOSFET电容在LLC串联谐振电路中的作用

图(a):理想的ZVS波形;

图(b):Vds还没下降到0,Vgs已经出现。此种情况下,LLC串联谐振就会发生硬开关。应对之策需要减少变压器的励磁电流,或者适当增加死区时间(如果IC选定,死区时间一般就固定了);

图(c):实现了ZVS,但是谐振腔的电流不足以维持MOSFET体内二极管的持续导通。

图(d)死区时间过于长了,会降低整个LLC的工作效率。

总之,MOSFET的等效输出电容对于LLC原边MOSFET ZVS的实现是至关重要的。如果MOSFET已经选定,谐振腔需要仔细计算、调试和设定,并选取合适的死区时间,来覆盖所有负载的应用范围。实际应用中对于稳态运行的硬开关都可以通过设计进行修正从而达到稳定运行的设计目的。然而开机过程中的硬开关(软启高频到低频过程中),尤其是开机过程中的头几个开关周期,对于有些设计和方案,硬开关是避免不了的。


下载发烧友APP

打造属于您的人脉电子圈

关注电子发烧友微信

有趣有料的资讯及技术干货

关注发烧友课堂

锁定最新课程活动及技术直播

电子发烧友观察

一线报道 · 深度观察 · 最新资讯
收藏 人收藏
分享:

评论

相关推荐

AD7156 超低功耗、1.8 V、3 mm ×...

和特点 超低功耗电源电压: 1.8 V 至 3.6 V工作电流: 70 μA (典型值)关断电流:2 μA(典型值) 快速响应时间转换时间:每通道10 ms从串行接口唤醒时间:300 μs 自适应式环境补偿技术 2 个电容输入通道传感器电容(CSENS): 0 pF至13 pF灵敏度可达3 fF 2 种工作模式固定设置的独立模式用户自定义设置的微控制器接口模式 2 个检测输出标志双线式串行接口(I2C兼容)工作温度范围:?40°C至+85°C 10引脚LFCSP封装(3 mm × 3 mm × 0.8 mm) 产品详情 AD7156采用一种响应快速的超低功耗转换器,为电容式传感器提供了一种全面的信号处理解决方案。AD7156采用ADI公司的电容数字转换器(CDC)技术,这种技术汇集与实际传感器接口过程中起着重要作用的多种特色功能于一身,如高输入灵敏度、较高的输入寄生接地电容和漏电流容限。集成自适应式阙值算法可对因环境因素(如湿度和温度)或绝缘材料老化而导致传感器电容发生的任何变化进行补偿。默认情况下,AD7156采用固定上电设置以独立模式运行,并以两路数字输出显示检测结果。另外,AD7156也可通过串行接口与微控制器连接,可通过用户自定义设置对内部寄存器进行编程,而数据和状态信息则可从...

发表于 2019-02-22 12:40 ? 0次阅读
AD7156 超低功耗、1.8 V、3 mm ×...

AD7147A CapTouch?单电极电容式传...

和特点 可编程电容数字转换器(CDC) - 欲了解更多信息,请参考数据手册。 片内自动校准逻辑自动补偿环境变化自适应的阈值和灵敏度电平 寄存器映射与AD714x兼容 用片内RAM存储校准数据 SPI兼容型(串行外设接口兼容)接口(AD7147A) I2C兼容型串行接口(AD7147A-1) 串行接口专用独立VDRIVE电平 25引脚、2.3 mm × 2.1 mm WLCSP封装 从触摸到响应的延迟时间极短产品详情 AD7147A CapTouch?控制器设计用于电容式传感器,以实现按钮、滚动条和滚轮等功能。这种传感器只需一层PCB板,为超薄型应用创造了可能。AD7147A是一种配备片内环境校准功能的集成式CDC。该CDC有13个输入通道,通过一个开关矩阵与一个16位、250 kHz Σ-Δ型转换器相连。该CDC能够感知外部传感器的电容变化,并借助此信息来记录传感器激活事件。通过对寄存器进行编程,用户可完全控制CDC设置。高分辨率传感器要求在主机处理器上运行较少的软件,可能需要两层PCB。AD7147A设计用于单电极电容式传感器(接地传感器)。配有一个有源屏蔽输入,以尽可能降低传感器中的噪声影响。AD7147A配有片内校准逻辑,用以补偿周围环境发生的变化。只要传感...

发表于 2019-02-22 12:40 ? 0次阅读
AD7147A CapTouch?单电极电容式传...

AD7151 用于近程传感的超低功耗单通道电容式...

和特点 超低功耗工作电压(V):2.7 V至3.6 V;工作电流:70 μA 响应时间:10 ms 自适应式环境补偿技术 1个电容输入通道传感器电容(CSENS)0 pF,最高13 Pf灵敏度可达1 fF 经过EMC测试 两种运行模式固定设置的独立运行模式用户自定义设置的微控制器接口运行模式 近程检测输出标志 双线串行接口(I2C兼容) 工作温度:-40°C至+85°C 10引脚MSOP封装产品详情 AD7151采用一种响应快速的超低功耗转换器,为电容式近程传感器提供了一种全面的信号处理解决方案。AD7150是AD7151的双通道形式。AD7151采用ADI公司的电容-数字转换器(CDC)技术,这种技术汇集了与实际传感器接口过程中起着重要作用的众多特性于一身,如高输入灵敏度,较高的输入寄生接地电容和泄漏电流容限。集成自适应式阈值算法可对因环境因素(如湿度和温度)或绝缘材料老化而导致传感器电容发生的任何变化进行补偿。默认情况下,AD7151采用固定加电设置以独立模式运行,并以一路数字输出显示检测结果。另外,AD7151也可通过串行接口与微控制器连接,可通过用户自定义设置对内部寄存器进行编程,而数据和状态信息则可从该器件中读取。AD7151工作电源电压为2.7...

发表于 2019-02-22 12:40 ? 0次阅读
AD7151 用于近程传感的超低功耗单通道电容式...

AD7746 24位、双通道电容数字转换器

和特点 下载示例代码采用单芯片解决方案的新标准可与单一或差分浮动式传感器接口分辨率:最低4 aF(即最高21 ENOB)精度:4 fF线性度:0.01%共模(不可变)电容最大可达17 pF满量程(可变)电容范围:±4 pF耐受对地寄生电容:最大60 pF更新速率:10 Hz~90 Hz16 Hz时,50 Hz、60 Hz同时抑制片内温度传感器分辨率:0.1°C,精度:±2°C电压输入通道内部时钟振荡器双线式串行接口(I2C?兼容)电源:2.7 V至5.25 V单电源工作功耗:0.7 mA工作温度范围:–40°C~+125°C16引脚TSSOP封装 产品详情 AD7745/AD7746均为高分辨率、Σ-Δ电容数字转换器(CDC),可直接与电容传感器的电容连接进行测量。该芯片还具有高分辨率(24位无失码、最高21位有效分辨率)、高线性度(±0.01%)和高精度(±4 fF工厂校准)等固有特性。AD7745/AD7746的电容输入范围是±4 pF(可变),同时可接受最大17 pF共模电容(不可变),后者可以通过一个可编程片内数字电容转换器(CAPDAC)来平衡。AD7745拥有一个电容输入通道,AD7746则拥有两个通道。每个通道均可配置为单端输入或差分输入方式。AD7745/AD7746针对浮动式电容传感器而设计...

发表于 2019-02-22 12:39 ? 0次阅读
AD7746 24位、双通道电容数字转换器

AD7745 24位、单通道电容数字转换器

和特点 采用单芯片解决方案的新标准可与单一或差分浮动式传感器接口分辨率:最低4 aF(即最高21 ENOB)精度:4 fF线性度:0.01%共模(不可变)电容最大可达17 pF满量程(可变)电容范围:±4 pF耐受对地寄生电容:最大60 pF更新速率:10 Hz~90 Hz16 Hz时,50 Hz、60 Hz同时抑制片内温度传感器? 分辨率:0.1°C,精度:±2°C电压输入通道内部时钟振荡器双线式串行接口(I2C?兼容)电源:? 2.7 V至5.25 V单电源工作? 功耗:0.7 mA工作温度范围:–40°C~+125°C16引脚TSSOP封装 产品详情 AD7745/AD7746均为高分辨率、Σ-Δ电容数字转换器(CDC),可直接与电容传感器的电容连接进行测量。该芯片还具有高分辨率(24位无失码、最高21位有效分辨率)、高线性度(±0.01%)和高精度(±4 fF工厂校准)等固有特性。AD7745/AD7746的电容输入范围是±4 pF(可变),同时可接受最大17 pF共模电容(不可变),后者可以通过一个可编程片内数字电容转换器(CAPDAC)来平衡。AD7745拥有一个电容输入通道,AD7746则拥有两个通道。每个通道均可配置为单端输入或差分输入方式。AD7745/AD7746针对浮动式电容传感器而设计。若...

发表于 2019-02-22 12:39 ? 0次阅读
AD7745 24位、单通道电容数字转换器

AD7143 电容式触摸传感器专用可编程控制器

和特点 可编程的电容-数字转换器25 ms的更新速率(最大序列长度时)分辨率优于1 fF8个电容式传感器输入通道无需使用外部RC调谐元件 自动转换定序器片内自动校准逻辑自动补偿环境变化自适应式阈值和灵敏度水平 用片内RAM存储校准数据 I2C? 兼容型串行接口 串行接口专用独立VDRIVE电平 主机控制器中断输出 16引脚、4 mm × 4 mm LFCSP-VQ封装 2.6 V至3.6 V的工作电压 低工作电流全功耗模式:不足1 mA低功耗模式:50 μA产品详情 AD7143是具有片内环境校准功能的集成式电容-数字转换器(CDC),可用于需要采用新型用户输入法的系统。AD7143可与外部电容式传感器接口,从而实现电容按钮、滚动条和滚轮等功能。 CDC有8个输入通道,通过一个开关矩阵与一个16位、250 kHz sigma-delta (Σ-Δ)电容-数字转换器相连。该CDC能够感知外部传感器的电容变化,并借助此信息来记录传感器激活事件。外部传感器既可配置成一系列按钮,也可配置成一个滚动条或滚轮,或者各类传感器的组合。通过对寄存器进行编程,用户可完全控制CDC设置。高分辨率传感器要求在主机处理器上运行软件。AD7143配有片内校准逻辑,用以处理周围环境发生的变化。传...

发表于 2019-02-22 12:39 ? 0次阅读
AD7143 电容式触摸传感器专用可编程控制器

AD7152 12位电容数字转换器(2个电容输入...

和特点 电容数字转换器 与浮动式传感器接口 分辨率:最低0.25 fF(即最高12 ENOB) 线性度:0.05% 共模(不可变)电容最大可达5 pF 内部时钟振荡器 双线式串行接口(I2C兼容) 单电源供电:2.7 V至3.6 V,功耗:100 μA 欲了解更多信息,请参考数据手册产品详情 AD7152/AD7153均为12位Σ-Δ型电容数字转换器(CDC),要测量的电容可直接连接到器件输入端。该器件结构具有高分辨率(12位无失码、最高12位有效分辨率)和高线性度(±0.05%)等固有特性。两款器件在每种工作模式下均有四种电容输入范围:在差分模式下为±0.25 pF至±2 pF,在单端模式下为0.5 pF至4 pF。AD7152/AD7153可接受最大5 pF共模电容(不可变),后者可以通过一个可编程片内数字电容转换器(CAPDAC)来平衡。AD7153拥有一个电容输入通道,AD7152则拥有两个通道。每个通道均可配置为单端输入或差分输入方式。两款器件均针对浮动式电容传感器而设计。AD7152/AD7153均有一个双线式I2C?兼容串行接口。二者均可采用2.7 V至3.6 V单电源供电,额定温度范围为?40°C至+85°C,采用10引脚MSOP封装。应用 汽车电子、工业和医疗系统,用于:压力测量位置检测液...

发表于 2019-02-22 12:39 ? 0次阅读
AD7152 12位电容数字转换器(2个电容输入...

AD7843 触摸屏数字转换器

和特点 4线触摸屏接口 额定吞吐量:125 kSPS 低功耗:最大1.37 mW(125 kSPS,VCC = 3.6 V) 单电源(VCC):2.2 V至5.25 V 比率转换 高速串行接口 可编程8位或12位分辨率 2个辅助模拟输入 关断模式:最大1 μA 16引脚QSOP和TSSOP封装产品详情 AD7843是一款12位逐次逼近型ADC,具有同步串行接口以及用于驱动触摸屏的低导通电阻开关,采用2.2 V至5.25V单电源供电,吞吐量大于125 kSPS。AD7843采用的外部基准电压,可在1 V至+VCC范围内变化,而模拟输入范围为0 V至VREF。这款器件具有关断模式,此模式下功耗不足1 μA。AD7843提供两种封装:16引脚、0.15英寸、四分之一大小集成封装(QSOP). 和16引脚超薄紧缩小型封装(TSSOP)。查看QSOP 封装尺寸。(格式:pdf,大?。?9,569 字节)同时也可查看AD7843的同类器件AD7873。AD7873与AD7843相似,但拥有更多功能,例如:一个片内温度传感器(-40°C至+ 85°C),2.5 V片内基准电压源,以及电池和触摸压力测量。方框图...

发表于 2019-02-22 12:39 ? 0次阅读
AD7843 触摸屏数字转换器

AD7142 电容式触摸传感器专用可编程控制器

和特点 可编程的电容数字转换器36 ms的更新速率(最大序列长度时)分辨率优于1 fF14个电容式传感器输入通道无需使用外部RC调谐元件自动转换定序器片内自动校准逻辑自动补偿环境变化自适应的阈值和灵敏度电平用片内RAM存储校准数据SPI?兼容型串行接口(AD7142) I2C?兼容型串行接口(AD7142-1) 串行接口专用独立VDRIVE电平中断输出和GPIO 32-引脚、5 mm x 5 mm LFCSP_VQ封装 电源电压:2.6 V至3.6 V低工作电流全功率模式:小于1 mA低功耗模式:50 μA 产品详情 AD7142和AD7142-1是具有片内环境校准功能的集成式电容-数字转换器(CDC),可用于需要采用新型用户输入法的系统。AD7142和AD7142-1可与外部电容式传感器接口,从而实现电容按钮、滚动条或滚轮等功能。该CDC有14个输入通道,通过一个开关矩阵与一个16位、250 kHz Σ-Δ型电容数字转换器相连。该CDC能够感知外部传感器的电容变化,并借助此信息来记录传感器激活事件。外部传感器既可配置成一系列按钮,也可配置成一个滚动条或滚轮,或者各类传感器的组合。通过对寄存器进行编程,用户可完全控制CDC设置。高分辨率传感器要求在主处理器上运行较少的软件。 A...

发表于 2019-02-22 12:39 ? 0次阅读
AD7142 电容式触摸传感器专用可编程控制器

AD7150 用于近程传感的超低功耗双通道电容式...

和特点 超低功耗工作电压(V):2.7 V至3.6 V;工作电流:100 μA 响应时间:10 ms 自适应式环境补偿技术 2个独立的电容输入通道传感器电容(CSENS)0 pF,最高13 Pf灵敏度可达1 fF 经过EMC测试 两种运行模式固定设置的独立运行模式用户自定义设置的微控制器接口运行模式 两个近程检测输出标志 双线串行接口(I2C兼容) 工作温度:?40°C至+85°C 10引脚MSOP封装产品详情 AD7150采用一种响应快速的超低功耗转换器,为电容式近程传感器提供了一种全面的信号处理解决方案。AD7151是AD7150的更低功耗、单通道形式。AD7150采用ADI公司的电容-数字转换器(CDC)技术,这种技术汇集了与实际传感器接口过程中起着重要作用的多种特色功能于一身,如高输入灵敏度,较高的输入寄生接地电容和泄漏电流容限。集成自适应式阈值算法可对因环境因素(如湿度和温度)或绝缘材料老化而导致传感器电容发生的任何变化进行补偿。默认情况下,AD7150采用固定加电设置以独立模式运行,并以两路数字输出显示检测结果。另外,AD7150也可通过串行接口与微控制器连接,可通过用户自定义设置对内部寄存器进行编程,数据和状态信息可从该器件中读取。 AD...

发表于 2019-02-22 12:38 ? 0次阅读
AD7150 用于近程传感的超低功耗双通道电容式...

AD7147 CapTouch?单电极电容式传感...

和特点 可编程的电容-数字转换器(CDC)fF分辨率 13路电容传感器输入 9ms的更新速率(所有13路传感器输入) 无需外部RC元件 自动转换定序器 /li> 片内自动校准逻辑 自动补偿环境变化 自适应的阈值和灵敏度电平 寄存器图可与AD7142兼容 用片内RAM存储校准数据 SPI兼容型(串行外设接口兼容)串行接口(AD7147) I2C兼容型串行接口(AD7147-1) 串行接口专用独立VDRIVE电平 中断输出和通用输入/输出(GPIO) 24引脚、4 mm x 4 mm LFCSP封装 欲了解更多特性,请参考数据手册 产品详情 AD7147 CapTouch?控制器设计用于电容式传感器,以实现按钮、滚动条和滚轮等功能。这种传感器只需一层PCB板,为超薄型应用创造了可能。AD7147是一种配备片内环境校准功能的集成式CDC。该CDC有13个输入通道,通过一个开关矩阵与一个16位、250 kHz sigma-delta (Σ-Δ) 转换器相连。该CDC能够感知外部传感器的电容变化,并借助此信息来记录传感器激活事件。通过对寄存器进行编程,用户可完全控制CDC设置。高分辨率传感器只要求在主机处理器上运行较少的软件。AD7147设计用于单电极电容式传感器(接地传感器)。配有一个有源...

发表于 2019-02-22 12:36 ? 0次阅读
AD7147 CapTouch?单电极电容式传感...

LTC1043 双通道精准仪表开关电容器单元式部...

和特点 具 120dB CMRR 的仪表前端精确的电荷平衡开关操作采用 3V 至 18V 电源工作内部或外部时钟可在高达 5MHz 时钟速率下工作低功率具有一个时钟的两个独立部分 产品详情 LTC?1043 是一款单片式、电荷平衡、双通道开关电容器仪表单元式部件。一对开关交替地把一个外部电容器连接至一个输入电压,然后把这个充了电的电容器连接在一个输出端口的两端。内部开关具有一个 “先断后合” 动作。该器件提供了一个内部时钟,这个时钟的频率可利用一个外部电容器进行调节。另外,LTC1043 还可利用一个外部 CMOS 时钟来驱动。当使用低时钟频率时,LTC1043 可提供超精准的 DC 功能,并不需要精确的外部组件。此类功能是差分电压至单端转换、电压倒相、电压倍增以及二分压、三分压、四分压、五分压等等。LTC1043 还可用于精确的电压–频率 (V–F) 和频率–电压 (F–V) 转换电路 (无需修整),而且,它也是一款用于开关电容滤波器、振荡器和调制器的单元式部件。LTC1043 运用凌力尔特 (现隶属 ADI) 的增强型 LTCMOS? 硅栅工艺制造。应用精准仪表放大器超精准电压倒相器、倍增器和分压器V–F 和 F–V 转换器采样及保持开关电容滤波器 ...

发表于 2019-02-22 12:32 ? 0次阅读
LTC1043 双通道精准仪表开关电容器单元式部...

LTC6943 微功率、精准仪表双开关电容器单元...

和特点 Low Power, IS = 60μA(Max) Robust, Latch Up Proof Instrumentation Front End with 120dB CMRR Precise, Charge-Balanced Switching Operates from 5V to 18V Internal or External Clock Operates up to 5MHz Clock Rate Two Independent Sections with One Clock Tiny SSOP-16 Package 产品详情 The LTC?6943 is a monolithic, charge-balanced, dual switched capacitor instrumentation building block. A pair of switches alternately connects an external capacitor to an input voltage and then connects the charged capacitor across an output port. The internal switches have a break-before-make action. An internal clock is provided and its frequency can be adjusted with an external capacitor. The LTC6943 can also be driven with an external CMOS clock.The LTC6943, when used with low clock frequencies, provides ultra precision DC functions without requiring precise external components. Such functions are differential voltage to single-en...

发表于 2019-02-22 12:32 ? 0次阅读
LTC6943 微功率、精准仪表双开关电容器单元...

AD7877 触摸屏控制器

和特点 4线触摸屏接口 LCD降噪特性(STOPACQ引脚) 自动转换序列器与定时器 用户可编程的转换参数 片内温度传感器:-40°C至+85°C 2.5 V片内基准电压源 片内8位DAC 3个辅助模拟输入 1个专用GPIO和3个可选GPIO 3个中断输出 2个电池测量通道(0.5 V至5 V) 通过汽车应用认证 欲了解更多特性,请参考数据手册 产品详情 AD7877是一款12位逐次逼近型ADC,具有同步串行接口以及用于驱动触摸屏的低导通电阻开关,采用2.7 V至5.25 V单电源供电(2.2 V也可正常运转),吞吐速率为125 kSPS。AD7877可用于两个输入上的电池测量、温度测量和触摸压力测量。AD7877还具有一个2.5 V片上基准电压源。不使用时,可关断基准电压源以降低功耗。也可以使用外部基准电压,并可在1 V至+VCC范围内变化,模拟输入范围为0 V至VREF。这款器件具有关断模式,此模式下功耗不足1 μA。片上ADC的相位采集通过STOPACQ引脚来控制,这样可以降低来自LCD的噪声影响。用户可编程转换控制包括可变采集时间及第一转换延迟。每次转换可利用多达16个均值。该器件还有一个片上DAC,用来控制LCD背光或对比度。AD7877采用转换序列器与定...

发表于 2019-02-22 12:25 ? 0次阅读
AD7877 触摸屏控制器

LT1139A 采用小电容器的先进低功率 5V ...

和特点 ESD?;さ燃冻?±10kV(对于 LT1133A、LT1137A 和 LT1141A 为 ±15kV IEC-1000-4-2) 使用小的电容器:0.1μF、0.2μF 在?;?(SHUTDOWN) 模式中电源电流为 1μA 120kbaud 传输速率 (RL = 3k,CL = 2500pF) 250kbaud 传输速率 (RL = 3k,CL = 1000pF) 与 CMOS 器件相似的低功率 简易的 PC 布局:直通式架构 坚固型双极性设计:绝对无闭锁现象 当关闭或断电时输出呈高阻抗状态 改进的?;つ芰Γ篟S232 I/O 线路可被强制至 ±30V 而不致受损 输出过压不会强迫电流返回到电源中 可提供 SO 封装和 SSOP 封装 产品详情 LT?1130A / LT1140A 系列 RS232 收发器采用了特殊的双极型结构技术,可在故障情况超过针对 RS232 所规定的限值时?;で骱徒邮掌髅馐芩鸹?。驱动器输出和接收器输入可短接至 ±30V,并不会损坏器件或电源发生器。此外,RS232 I/O 引脚能安然承受多次 ±10kV ESD 冲击。一个先进的驱动器输出级在驱动重的容性负载时传输速率高达 250kbaud。电源电流通常为 12mA,这与 CMOS 器件不相上下。隶属该系列的一些器件具有灵活的操作模式控制功能。DRIVER DISAB...

发表于 2019-02-22 12:24 ? 0次阅读
LT1139A 采用小电容器的先进低功率 5V ...

LT1281A 采用 0.1μF 电容器的低功率...

和特点 10mA 最大电源电流 ESD ?;さ燃冻?±10kV 使用小的电容器:0.1μF 120kBaud 传输速率 (RL = 3k,CL = 2500pF) 250kBaud 传输速率 (RL = 3k,CL = 1000pF) 输出可承受 ±30V 而不受损 不亚于 CMOS 器件的低功率:40mW 采用单 5V 电源工作 坚固型双极性设计 当关闭或断电时输出呈高阻抗状态 满足所有的 RS232 规格要求 可提供带或不带?;δ艿陌姹?绝对无闭锁现象 采用 SO 封装 产品详情 LT?1280A / LT1281A 是双通道 RS232 驱动器 / 接收器对,其具有集成化充电泵,以依靠单 5V 电源产生 RS232 电压电平。这些电路采用坚固型双极性设计,以提供同类竞争 CMOS 设计无可比拟的操作故障耐受力和 ESD ?;に?。这些电路仅采用 0.1μF 外部电容器,消耗功率仅为 40mW,其传输速率可达 120kbaud,甚至在驱动重的容性负载时也不例外。芯片上的新型 ESD 结构使得 LT1280A / LT1281A 能够安然承受多次 ±10kV ESD 冲击,从而免除了在 RS232 线路引脚上增设昂贵 TransZorbs? 的需要。LT1280A / LT1281A 完全符合 EIA RS232 标准。驱动器输出得到了过载?;?,并可短路至地或高达 ±30V...

发表于 2019-02-22 12:24 ? 0次阅读
LT1281A 采用 0.1μF 电容器的低功率...

ADG1233 低电容, ±15 V/12 V ...

和特点 1.5 pF 关断电容 0.5 pC电荷注入 电源电压范围:33 V 导通电阻:120 Ω 额定电源电压:±15 V/+12 V 3 V 逻辑兼容输入 轨到轨工作 先开后合式开关动作 16引脚和20引脚TSSOP、4 mm × 4 mm LFCSP封装 典型功耗:<0.03 μW 产品详情 ADG1233和ADG1234均为单芯片iCMOS?模拟开关,分别内置三个/四个独立可选的单刀双掷SPDT开关。所有通道均采用先开后合式开关,防止开关通道时发生瞬时短路。该器件提供overbar: EN输入,用来使能或禁用器件。禁用时,所有通道均关断。iCMOS (工业CMOS)是一种??槭街圃旃ひ?,集高电压CMOS(互补金属氧化物半导体)与双极性技术于一体。利用这种工艺,可以开发工作电压达33 V的各种高性能模拟IC,并实现以往的高压器件所无法实现的尺寸。与采用传统CMOS工艺的模拟IC不同,iCMOS器件不但可以承受高电源电压,同时还能提升性能、大幅降低功耗并减小封装尺寸。这些多路复用器具有超低电容和电荷注入特性,因而是要求低突波和快速建立时间的数据采集与采样保持应用的理想解决方案。较快的开关速度及高信号带宽,使这些器件适合视频信号切换应用。iCMOS结构可确保功耗...

发表于 2019-02-22 12:12 ? 0次阅读
ADG1233 低电容, ±15 V/12 V ...

LTC1049 具内部电容器的低功率、零漂移运算...

和特点 低电源电流:200μA无需外部组件最大失调电压:10μV最大失调电压漂移:0.1μV/°C单电源操作:4.75V 至 16V输入共模范围包括地电位输出摆动至地电位典型过载恢复时间:6ms采用 8 引脚 SO 封装和 PDIP 封装 产品详情 LTC?1049 是一款高性能、低功率零漂移运算放大器。其他斩波器稳定型放大器通常在外部需要的两个采样及保持电容器实现了片内集成。而且,LTC1049 还提供优越的 DC 和 AC 性能,标称电源电流仅为 200μA。LTC1049 具有 2μV 的典型失调电压、0.02μV/°C 的漂移、3μVP-P 的 0.1Hz 至 10Hz 输入噪声电压、和 160dB 的典型电压增益。转换速率为 0.8V/μs,增益带宽乘积为 0.8MHz。从饱和状态的过载恢复时间为 6ms,比采用外部电容器的斩波放大器有了显著的改善。LTC1049 采用标准的 8 引脚塑料双列直插式封装以及 8 引脚 SO 封装。LTC1049 可以作为大多数标准运放的插入式替代产品,其拥有改善的 DC 性能和实质性的节能效果。应用4mA 至 20mA 电流环路热电偶放大器电子衡器医疗仪表应变仪放大器高分辨率数据采集 方框图...

发表于 2019-02-22 12:08 ? 0次阅读
LTC1049 具内部电容器的低功率、零漂移运算...

ADP3605 120 mA开关电容电压反相器,...

和特点 全稳压可调输出电压 高输出电流:120 mA 输出精度: ±3% 开关频率:250 kHz 低关断电流:2 μA(典型值) 输入电压范围:3 V至6 V SO-8封装 可以在–40°C至+85°C环境温度范围内工作 产品详情 ADP3605是一款120 mA反相调节器,可将3V至6V的输入转换为-3V输出。无需电感,即可提供全调节输出电压。作为一款电荷泵转换器,ADP3605集出色的精度(±5%线路、负载和温度精度)、低关断电流(10 μA典型值)和小尺寸等众多特点于一身。该器件内置1个500 kHz振荡器,支持小型电荷泵和滤波器电容。 方框图...

发表于 2019-02-22 12:05 ? 0次阅读
ADP3605 120 mA开关电容电压反相器,...

LTC4425 具电流限制理想二极管和电压 / ...

和特点 50mΩ 理想二极管 (从 VIN 至 VOUT) 智能充电电流模式可限制浪涌电流 内部电池平衡器 (无外部电阻器) 可编程输出电压 (LDO 模式) 可编程 VIN 至 VOUT 电流限值 可通过 PROG 引脚连续监视 VIN 至 VOUT 电流 低静态电流:20μA VIN 电源故障、PGOOD 指示器 2.45V/2.7V 电池?;し致?(4.9V/5.4V 超级电容器最大 Top-Off 电压) 3A 峰值电流限值,热限制 纤巧型应用电路,3mm x 3mm x 0.75mm DFN 封装和 12 引脚 MSOP 封装? 产品详情 LTC?4425 是一款恒定电流/恒定电压线性充电器,专为从一个锂离子/锂聚合物电池、一个 USB 端口或一个 2.7V 至 5.5V 电流限制电源对一个两节超级电容器电池组进行充电而设计。该器件起一个理想二极管的作用,并具有一个极低的 50mΩ 接通电阻,从而使其成为高峰值功率/低平均功率应用的合适之选。LTC4425 能够以一个恒定充电电流将输出电容器充电至一个外部设置的输出电压 (在 LDO 模式中),或者运用一种智能充电电流模式将输出电容器充电至 VIN (在标准模式中) 以限制浪涌电流,直到 VIN 至 VOUT 之差少于 250mV 为止。此外,也可把 LTC4...

发表于 2019-02-22 12:05 ? 0次阅读
LTC4425 具电流限制理想二极管和电压 / ...

LTC3128 具准确输入电流限值的 3A、单片...

和特点 准确度达 ±2% 的可编程 (高达 3A) 平均输入电流限值可编程最大电容器电压限值主动电荷平衡用于实现不匹配电容器的快速充电可给单个电容器或堆叠式电容器充电VIN 范围:1.73V 至 5.5VVOUT 范围:1.8V 至 5.5V当充电时从 VOUT 吸收的静态电流 <2μA在?;J街刑峁┦涑龆辖樱?lt;1μA IQ ?;缌鞯缭戳己帽冉掀鞯缭垂收现甘酒髂腿刃阅茉銮啃?20 引脚 (4mm x 5mm x 0.75mm) QFN 封装和 24 引脚 TSSOP 封装 产品详情 LTC?3128 是一款高效率、降压-升压型 DC/DC 超级电容器充电器。其可在输入电压高于、低于或等于输出电压的情况下高效运作。LTC3128 具有准确的可编程平均输入电流限值、主动电荷平衡功能和可编程最大电容器电压。这种特性组合使得 LTC3128 非常适合于对后备电源系统中的大电容器进行安全的充电和?;?。输入电流限值和最大电容器电压均采用单个电阻器来设置。平均输入电流可在一个 0.5A 至 3A 的可编程范围内进行准确的控制,而个别的最大电容器电压则可以设定在 1.8V 至 3.0V 之间。LTC3128 的其他特点包括在突发模式 (Burst Mode?) 操作中从VOUT 吸收的静态电流<2μA、准确的电源良...

发表于 2019-02-22 12:05 ? 0次阅读
LTC3128 具准确输入电流限值的 3A、单片...

LTC3643 2A 双向后备电源

和特点 用于提供系统后备电源的双向同步升压型电容器充电器 / 降压型稳压器宽输入电压范围:3V 至 17V高达 40V 的电容器电压存储器用于提供高能量后备2A 的最大 CAP 充电电流集成型 N 沟道功率 MOSFET (150mΩ 上管和 75mΩ 下管)用于实现输出 / CAP 断接的集成型 N 沟道功率 MOSFET (50mΩ)充电期间的输入电流限制快速 1MHz 开关频率用于系统电压调节的 ±1% 基准准确度用于指示充电状态和输入电源故障的指示器输出扁平 24 引脚 3mm x 5mm QFN 封装 产品详情 LTC?3643 是一款双向同步升压型充电器和降压型转换器,其能够采用一个电压介于 3V 至 17V 之间的输入电源有效地给一个高达 40V 的电容器阵列充电。当输入电源降至低于可编程的电源故障门限时,升压型充电器作为一个同步降压型稳压器反向运作,以在这种电源中断 / 故障情况下从后备电容器来给系统电压轨供电。当给后备电容器充电时,可以采用一个外部低值检测电阻器来保持一个准确的电流限值 (针对来自输入电源的电流) 或执行电源通路 (PowerPath?) 功能。降压型转换器工作在一个 1MHz 的开关频率,因而允许使用小的外部组件。调节期间的低静态电流可最大限度地减少后备...

发表于 2019-02-22 12:05 ? 0次阅读
LTC3643 2A 双向后备电源

LTC3110 2A、双向、降压-升压型 DC/...

和特点 VCAP 工作范围:0.1V 至 5.5VVSYS 工作范围:1.71V 至 5.25V从充电模式至后备模式的自动切换准确度为 ±2% 的可编程充电输入电流限值从 125mA 至 2A±1% 后备电压准确度自动后备电容器平衡固定的 1.2MHz 开关频率突发模式 (Burst Mode?) 操作:40μA 静态电流具集电极开路输出的内置可编程通用型比较器用于指示操作方向和充电结束的集电极开路输出耐热性能增强型 TSSOP-24 封装和 4mm x 4mm QFN-24 封装 产品详情 LTC?3110 是一款具有电容器充电器和平衡器的 2A 双向降压-升压型 DC/DC 稳压器。该器件拥有很宽的 0.1V 至 5.5V 电容器 / 电池电压和 1.8V 至 5.25V 系统后备电压范围,从而使其非常适合于众多采用超级电容器或电池的后备应用。一种专有的低噪声开关算法优化了效率,且电容器 / 电池电压可高于、低于或等于系统输出电压。LTC3110 能够根据一个外部命令自主地从充电模式转换至后备模式或开关模式。引脚可选的突发模式操作可减小待机电流和改善轻负载效率,其与 1μA 的?;缌飨嘧楹?,使得 LTC3110 成为后备应用的理想选择。这款器件的其他特点包括用于方向控制和充电结束的电压监控器,以及一个具有...

发表于 2019-02-22 12:04 ? 0次阅读
LTC3110 2A、双向、降压-升压型 DC/...

LTC3355 具集成型 SCAP 充电器和后备...

和特点 VIN 电压范围:3V 至 20VVOUT 电压范围:2.7V 至 5V1A 电流模式降压主稳压器采用单个超级电容器向 5A 升压型后备稳压器供电升压型稳压器可在低至 0.5V 的电压条件下运作,以最大限度地利用超级电容器的储能可编程超级电容器充电电流至 1A,并具过压?;すδ艹涞缙骺芍С值ソ?CC/CV 电池充电可编程 VIN 电流限值可编程升压电流限值VIN 电源故障指示器VCAP 电源良好指示器VOUT 上电复位输出紧凑型 20 引脚 4mm x 4mm QFN 封装 产品详情 LTC?3355 是一款完整的输入电源中断凌驾 DC/DC 系统。该器件可在向 VOUT 输送负载电流的同时给一个超级电容器充电,并在 VIN 电源缺失的情况下使用来自超级电容器的能量以提供连续的 VOUT 后备电源。LTC3355 包含一个异步、恒定频率、电流模式、单片 1A 降压型开关稳压器,以采用一个高达 20V 的输入电源来提供 2.7V 至 5V 的稳定输出电压。一个 1A 可编程恒定电流 / 恒定电压 (CC/CV) 线性充电器负责从 VOUT 给超级电容器充电。当 VIN 电源降至低于 PFI 门限时,该器件的恒定频率、异步、电流模式 5A 升压型开关稳压器将从超级电容器向 VOUT ...

发表于 2019-02-22 12:04 ? 0次阅读
LTC3355 具集成型 SCAP 充电器和后备...

LTC3625 具自动电池平衡功能的 1A、高效...

和特点 两个串联超级电容器的高效率升压/降压充电 自动电池平衡可防止电容器在充电期间出现过压状况 高达 500mA (单个电感器)、1A (双电感器) 的可编程充电电流 VIN = 2.7V 至 5.5V 每节超级电容器可选的 2.4V/2.65V 稳压 (LTC3625) 每节超级电容器可选的 2V/2.25V 稳压 (LTC3625-1) 低的无负载静态电流:23μA 在?;J街?IVOUT、IVIN < 1μA 扁平 12 引脚 3mm x 4mm DFN 封装 ? 产品详情 LTC?3625/LTC3625-1 是可编程超级电容器充电器,专为从一个 2.7V 至 5.5V 输入电源将两个串联超级电容器充电至一个固定输出电压 (可选择 4.8V/5.3V 或 4V/4.5V) 而设计。自动电池平衡功能可在实现充电速率最大化的同时防止任一个超级电容器遭受过压损坏。无需使用平衡电阻器。 高效率、高充电电流、低静态电流和极低的外部组件数目 (一个电感器、VIN 上的一个旁路电容器和一个编程电阻器) 使得 LTC3625/LTC3625-1 非常适合小外形的后备或高峰值功率系统。 充电电流/最大输入电流水平利用一个外部电阻器来设置。当输入电源拿掉和/或 EN 引脚为低电平时,LTC3625/LTC3625-1 将自动进入一种低电流状态,此...

发表于 2019-02-22 12:04 ? 0次阅读
LTC3625 具自动电池平衡功能的 1A、高效...

LTC3350 大电流超级电容器后备控制器和系统...

和特点 可对 1 ~ 4 节串联超级电容器进行高效同步降压型恒流/恒压 (CC/CV) 充电后备模式中的升压模式可提供更高的超级电容器储能利用率14 位 ADC 用于监视系统电压 / 电流、电容值和 ESR主动过压?;し致纺诓坑性雌胶馄?── 无需平衡电阻VIN:4.5V ~ 35V,VCAP(n):每个电容器高达 5V,充电 / 后备电流:10+A可编程输入电流限制将系统负载的优先级确定为高于电容器充电电流双通道理想二极管电源通路 (PowerPath?) 控制器全 N-FET 充电器控制器和 PowerPath 控制器紧凑型 38 引脚 5mm x 7mm QFN 封装 产品详情 LTC?3350 是一款后备电源控制器,能够对一个含有 1 至 4 个超级电容器的串联堆栈进行充电和监视。LTC3350 的同步降压型控制器负责驱动 N 沟道 MOSFET,利用可编程输入电流限值实现恒流 / 恒压充电。此外,降压转换器还可作为一个升压转换器反向运行以从超级电容器组向后备电源轨输送电能。内部平衡器免除了增设外部平衡电阻的需要,而且每个电容具有一个用于提供过压?;さ姆致返鹘谄?。LTC3350 可监视系统电压、电流、电容组电容和电容组 ESR,这些信息均可通过 I2C / SMBus 读取。双通道理想二极管控...

发表于 2019-02-22 12:04 ? 0次阅读
LTC3350 大电流超级电容器后备控制器和系统...

LTC3351 可热插拔的超级电容器充电器、后备...

和特点 具电路断路器的集成化热插拔控制器可对 1 至 4 节串联超级电容器进行高效率同步降压型恒定电流 / 恒定电压 (CC/CV) 充电后备模式中的升压模式可提供更高的超级电容器储能利用率16 位 ADC 用于监视系统电压 / 电流、电容和 ESR可编程欠压和过压门限至 35VVIN:4.5V 至 35V,VCAP(n):每个电容器高达 5V,充电 / 后备电流:>10A可编程输入电流限制把系统负载的优先级确定为高于电容器充电电流全 N-FET 充电器控制器和 PowerPath 控制器紧凑型 44 引脚 4mm x 7mm QFN 封装 产品详情 LTC?3351 是一款后备电源控制器,其能够对一个含有 1~4 个超级电容器的串联堆栈进行充电和监察。LTC3351 的同步降压型控制器负责驱动 N 沟道 MOSFET,以利用可编程输入电流限值实现恒定电流 / 恒定电压充电。此外,降压转换器还可作为一个升压转换器反向运行,以从超级电容器组向后备电源轨输送电能。内部平衡器免除了增设外部平衡电阻器的需要,而且每个电容器具有一个用于提供过压?;さ姆致返鹘谄?。LTC3351 可监视系统电压、电流、电容器组电容和电容器组 ESR,这些信息均可通过 I2C / SMBus 端口读取。热插拔控制器采用...

发表于 2019-02-22 12:03 ? 0次阅读
LTC3351 可热插拔的超级电容器充电器、后备...

LTC4041 2.5A 超级电容器备份电源管理...

和特点 2.5A 降压超级电容器充电器和 2.5A 升压备份电源 适用于使用一个超级电容器或两个串联超级电容器的 2.5A 备份电源的 6.5A 开关 输入电流限制将负载优先于充电电流进行处理 输入断开开关可在备份期间隔离输入 自动无缝切换到备份模式 内部超级电容器平衡器(无外部电阻器) 可编程充电电流和充电电压 输入电源故障指示器 系统电源正常指示器 可选 OVP 电路可?;て骷皇?>60V 电压影响 恒频运行 热增强 24 引脚 4mm × 5mm QFN 封装 产品详情 LTC4041 是适用于 2.9V 至 5.5V 电源轨的完整超级电容器备份系统。它包含高电流降压直流/直流转换器,用于为单个超级电容器或两个串联超级电容器充电。当输入电源不可用时,降压稳压器将作为升压稳压器反向运行,从超级电容器备份系统输出。LTC4041 的可调输入电流限制功能可降低充电电流,从而?;な淙氲缭疵馐芄赜跋?,同时,外部断开开关会在备份期间隔离输入电源。当输入电源降至可调 PFI 阈值以下时,2.5A 升压稳压器会从超级电容器向系统输出供电??裳〉氖淙牍贡;?(OVP) 电路可?;?LTC4041,避免在 VIN 引脚处发生高电压损坏。内部超级电容器平衡电路可在每个超级电容器...

发表于 2019-02-22 12:03 ? 0次阅读
LTC4041 2.5A 超级电容器备份电源管理...

LT1141A 采用小电容器的先进低功率 5V ...

和特点 ESD ?;さ燃冻?±10kV(对于 LT1133A、LT1137A 和 LT1141A 为 ±15kV IEC-1000-4-2) 使用小的电容器:0.1μF、0.2μF 在?;?(SHUTDOWN) 模式中电源电流为 1μA 120kbaud 传输速率 (RL = 3k,CL = 2500pF) 250kbaud 传输速率 (RL = 3k,CL = 1000pF) 与 CMOS 器件相似的低功率 简易的 PC 布局:直通式架构 坚固型双极性设计:绝对无闭锁现象 当关闭或断电时输出呈高阻抗状态 改进的?;つ芰Γ篟S232 I/O 线路可被强制至 ±30V 而不致受损 输出过压不会强迫电流返回到电源中 可提供 SO 封装和 SSOP 封装 产品详情 LT?1130A / LT1140A 系列 RS232 收发器采用了特殊的双极型结构技术,可在故障情况超过针对 RS232 所规定的限值时?;で骱徒邮掌髅馐芩鸹?。驱动器输出和接收器输入可短接至 ±30V,并不会损坏器件或电源发生器。此外,RS232 I/O 引脚能安然承受多次 ±10kV ESD 冲击。一个先进的驱动器输出级在驱动重的容性负载时传输速率高达 250kbaud。电源电流通常为 12mA,这与 CMOS 器件不相上下。隶属该系列的一些器件具有灵活的操作模式控制功能。DRIVER DISA...

发表于 2019-02-22 12:02 ? 0次阅读
LT1141A 采用小电容器的先进低功率 5V ...

LTC3225 150mA 超级电容充电器

和特点 两个串联超级电容器的低噪声恒定频率充电 自动单元平衡处理可防止在充电过程中发生电容器过压现象 可编程充电电流 (高达 150mA) 每个单元可选的 2.4V 或 2.65V 稳压 (LTC3225) 每个单元可选的 2V 或 2.25V 稳压 (LTC3225-1) 自动再充电 在待机模式中 IVIN = 20μA ICOUT < 1μA (当输入电源被拿掉时) 无电感器 纤巧型应用电路 (3mm x 2mm DFN 封装,所有元件的高度均...

发表于 2019-02-22 11:34 ? 0次阅读
LTC3225 150mA 超级电容充电器

使用ESR电容提高可穿戴设备的能效与电池寿命

大多数可穿戴设备的主要设计目标是确保将能耗保持在最低水平。用户不喜欢经常为可穿戴设备充电,特别是如果...

发表于 2019-02-22 08:00 ? 182次阅读
使用ESR电容提高可穿戴设备的能效与电池寿命

78l05输出不正常

发表于 2019-02-22 01:53 ? 17次阅读
78l05输出不正常

杨博士6kW软开关技术开关电源设计

发表于 2019-02-21 16:37 ? 210次阅读
杨博士6kW软开关技术开关电源设计

【公告】新老学员都看过来!报名张飞LLC开关电源学习须知

发表于 2019-02-21 14:30 ? 75次阅读
【公告】新老学员都看过来!报名张飞LLC开关电源学习须知

电源供电输入在掉电后输出要如何保持

发表于 2019-02-20 11:06 ? 295次阅读
电源供电输入在掉电后输出要如何保持

LLC开关频率抖动是什么原因造成的

发表于 2019-02-20 10:29 ? 247次阅读
LLC开关频率抖动是什么原因造成的

全桥实验为什么MOS管的源极和栅极间要多加一个电容

发表于 2019-02-20 09:59 ? 314次阅读
全桥实验为什么MOS管的源极和栅极间要多加一个电容

资深工程师经验:提升开关电源效率和可靠性的措施

发表于 2019-02-20 06:30 ? 218次阅读
资深工程师经验:提升开关电源效率和可靠性的措施

电容基础知识大全

文 | 传感器技术电容相信大家都不陌生,就算没有见过也听过,在现在的生活中,电容是必不可少的元件之一...

发表于 2019-02-19 14:55 ? 328次阅读
电容基础知识大全

直流电机驱动电路供电端的滤波电容总是烧

发表于 2019-02-18 21:56 ? 26次阅读
直流电机驱动电路供电端的滤波电容总是烧

电容给作为LED驱动的原理

发表于 2019-02-18 14:04 ? 232次阅读
电容给作为LED驱动的原理

湿度传感器的信号调节功能分析

湿度是空气中水蒸气量的术语。相对湿度(RH)定义为在给定温度下水蒸气的分压(在空气和水蒸气的气体混合...

发表于 2019-02-18 08:04 ? 495次阅读
湿度传感器的信号调节功能分析

请问数字万用表中的基准电容是做什么用的?

发表于 2019-02-14 14:42 ? 121次阅读
请问数字万用表中的基准电容是做什么用的?

浅谈电容在电路中的27种应用案例

所谓电容,就是容纳和释放电荷的电子元器件。电容的基本工作原理就是充电放电,当然还有整流、振荡以及其它...

发表于 2019-02-14 13:50 ? 375次阅读
浅谈电容在电路中的27种应用案例

MLCC如何成产业景气的风向标

在经历近两年的疯狂涨价潮后,MLCC价格崩跌。作为电子工业的黄金配角,MLCC竟成了产业景气的风向标...

发表于 2019-02-05 09:00 ? 645次阅读
MLCC如何成产业景气的风向标

芯片超人创始人分享了她这一年的收获以及对行业转型...

.这是三星和索尼这些传统大厂的展位,如果不是在CES展看到他们,我可能都忘记他们的存在了,因为现在我...

发表于 2019-01-30 14:25 ? 1101次阅读
芯片超人创始人分享了她这一年的收获以及对行业转型...

如何用一个简单的电路测试你的反应速度

上图是一个555定时器组成的人体反应时间测试电路。该电路只是对人体反应时间的一个大体展现,并不能给到...

发表于 2019-01-24 16:50 ? 0次阅读
如何用一个简单的电路测试你的反应速度

60小时视频教程精通半桥LLC开关电源设计!

为了响应广大工程师的需求,张飞实战电子最新视频教程《60小时精通半桥LLC开关电源设计》即将出炉!彻...

发表于 2019-01-14 13:52 ? 0次阅读
60小时视频教程精通半桥LLC开关电源设计!

常用的十大电子元器件,命名为“十大电子元器件明星

识别方法:二极管的识别很简单,小功率二极管的N极(负极),在二极管外表大多采用一种色圈标出来,有些二...

发表于 2019-01-02 14:19 ? 1245次阅读
常用的十大电子元器件,命名为“十大电子元器件明星

单片机中的高阻态到底什么意思?

在我们刚一开始接触到51单片机的时候对P0口必须加上上拉电阻,否则P0就是高阻态,对这个问题可能感到...

发表于 2019-01-01 09:05 ? 487次阅读
单片机中的高阻态到底什么意思?

电容和电池是一个东西吗?

电容和电池这两者都是电器原件,而且都是储能元器件,常见的电容是两个金属电极用绝缘材料隔开再加上?;ね?..

发表于 2018-12-31 15:12 ? 1179次阅读
电容和电池是一个东西吗?

【张飞LLC众筹】深度讲解半桥LLC开关电源设计

全网首发!张飞60+小时半桥串联谐振软开关LLC开关电源设计众筹。为帮助工程师们解决以上学习LLC谐...

发表于 2018-12-24 17:23 ? 972次阅读
【张飞LLC众筹】深度讲解半桥LLC开关电源设计

为了稳定低端MLCC价格,国巨低端电容减产50%

TDK宣布逐渐退出MLCC一般品的生产,而后村田及太阳诱电也计划将低利润的MLCC一般品停止生产,并...

发表于 2018-12-20 15:41 ? 2291次阅读
为了稳定低端MLCC价格,国巨低端电容减产50%

谐振电容起到什么作用

谐振电容其实是在含有电容和电感的电路中,实现瞬时间的增压。如果电容和电感并联,可能出现在某个很小的时...

发表于 2018-12-18 15:36 ? 2175次阅读
谐振电容起到什么作用

双值电容电机接线详解

电容分相电动机的转子绕组是浇筑成型的鼠笼式,定子上饶有2组空间上相差90°的启动绕组B和工作绕组A,...

发表于 2018-12-18 15:23 ? 2129次阅读
双值电容电机接线详解

Y电容的摆放位有多种方法,到底怎么接效果才是最好...

位置1、2加了Y电容后的作用:干扰源原本是从副边D1右边→散热→..经过一系列路径..→Ctx回到D...

发表于 2018-12-17 10:56 ? 1572次阅读
Y电容的摆放位有多种方法,到底怎么接效果才是最好...

浅析元器件在低频和高频中的不同特性

总之,在高频电路中,导线连同基本的电阻、电容和电感这些基本的无源器件的性能明显与理想元件特征不同。

发表于 2018-12-10 14:14 ? 545次阅读
浅析元器件在低频和高频中的不同特性

独石电容类型

本视频主要详细介绍了独石电容类型,分别是温度补偿类NP0电介质、高介电常数类X7R电介质以及为半导体...

发表于 2018-12-08 10:51 ? 1302次阅读
独石电容类型

浅析电容的作用和用途

电容是电路设计中最为普通常用的器件,是无源元件之一,有源器件简单地说就是需能(电)源的器件叫有源器件...

发表于 2018-12-07 14:36 ? 755次阅读
浅析电容的作用和用途

选定的电容该放在什么位置?

我们再来看一个实际的典型电路 - ADXL345是一颗加速度计传感器芯片,有两个分得比较开的电源管脚...

发表于 2018-12-06 11:59 ? 789次阅读
选定的电容该放在什么位置?

详细探讨一下不同类型电阻和电容之间的区别

可选择的数量足以让你的脑袋爆炸(图1)!各种各样电阻和电容类型都有其存在的原因。不同的工艺技术会有不...

发表于 2018-12-06 11:29 ? 1123次阅读
详细探讨一下不同类型电阻和电容之间的区别

TOSM和UOSM校准方法的基本原理与误差分析研...

传统的同轴系统校准方法通常叫TOSM----Through Open Short Match(又称S...

发表于 2018-12-04 16:09 ? 2410次阅读
TOSM和UOSM校准方法的基本原理与误差分析研...

详细解答精选PCB设计中的九个经典问题

电感值的选用除了考虑所想滤掉的噪声频率外,还要考虑瞬时电流的反应能力。如果LC的输出端会有机会需要瞬...

发表于 2018-12-03 11:28 ? 964次阅读
详细解答精选PCB设计中的九个经典问题

什么是无极性电容

无极电容就是没有极性电源正负极的电容器,无极性电容器的两个电极可以在电路中随意的接入。因为这款电容不...

发表于 2018-11-29 17:28 ? 1603次阅读
什么是无极性电容

摆脱不了的旁路电容谐振

对于这5个电容,将有5个串联自谐振频率,即SRF1、SRF2、SRF3、SRF4和SRF5,其中每一...

发表于 2018-11-22 10:43 ? 787次阅读
摆脱不了的旁路电容谐振

电子工程师必备的元器件整理大法

作为一个电子狗,你的工作台是怎样的呢?是垃圾场还是整整有条的呢?大部分都是前者吧,但其实作为一个处女...

发表于 2018-11-20 08:44 ? 1074次阅读
电子工程师必备的元器件整理大法

镭煜科技推出的材料粉体干燥系统能降低50%的能耗...

镭煜科技专业为客户提供自动化烘烤设备方案及非标自动化方案,目前主要研发和生产锂电池、超级电容以及粉体...

发表于 2018-11-19 17:29 ? 932次阅读
镭煜科技推出的材料粉体干燥系统能降低50%的能耗...

菜鸟对LLC谐振知识的渴望

那么此时副边到底是那个二极管导通呢,我相信刚开始接触LLC的朋友估计会有点纠结,我自己是这样判断的,...

发表于 2018-11-18 10:11 ? 1273次阅读
菜鸟对LLC谐振知识的渴望

探究元器件的低频和高频特性

都说大电容低频特性好,小电容高频特性好,那么根据容抗的大小与电容C及频率F成反比来说的话,是不是大电...

发表于 2018-11-17 09:47 ? 1085次阅读
探究元器件的低频和高频特性

触摸开关检测的基本原理以及抗干扰技术

平滑滤波器的实例,如图10所示。在本例中,使用本次计测值及前3次计测值(共计4次)的平均值作为本次检...

发表于 2018-11-13 09:50 ? 1492次阅读
触摸开关检测的基本原理以及抗干扰技术

为什么高压电线不能埋进地下详细原因分析

为什么不能像城市地下电缆一样,把高压电线全部埋进地下,这样不就可以一劳永逸

发表于 2018-11-11 10:02 ? 1430次阅读
为什么高压电线不能埋进地下详细原因分析

MLCC逆转行情 代理商放量出货价格快速下跌

自去年年初以来,MLCC进入持续性涨价周期;不过,涨价一年多的MLCC开始了逆转行情,不少MLCC代...

发表于 2018-11-08 11:24 ? 1314次阅读
MLCC逆转行情 代理商放量出货价格快速下跌

从不同的角度来说明电容退耦原理

寻找两颗电容,一颗谐振点在100kHz的电容去消除浪涌信号中的基波信号。再找一颗谐振点在几Mhz的电...

发表于 2018-11-07 10:01 ? 1113次阅读
从不同的角度来说明电容退耦原理

贴片电容怎么测量好坏

方法一:一般小贴片电容的阻值为无穷大,阻值异常就更换。容量变小,万用表无法测量,直接替换。

发表于 2018-11-06 17:11 ? 3817次阅读
贴片电容怎么测量好坏

贴片电容有什么用

去耦作用.电容在去耦电路中就叫做“去耦”电容,那么起到的作用自然也就是去耦作用了,主要是消除没记放大...

发表于 2018-11-06 17:03 ? 1461次阅读
贴片电容有什么用

解答LCR测试仪上显示的D和Q是什么/LP与LS...

LCR测试仪凭借其功能直接、操作简便的测试方法并得到广泛使用,通常使用LCR测试仪进行准确测试各种元...

发表于 2018-11-06 15:50 ? 1012次阅读
解答LCR测试仪上显示的D和Q是什么/LP与LS...

常用的十大电子元器件及相关的基础概念和知识

晶体二极管(crystaldiode)固态电子器件中的半导体两端器件。这些器件主要的特征是具有非线性...

发表于 2018-11-05 14:33 ? 1798次阅读
常用的十大电子元器件及相关的基础概念和知识

元器件成本大涨,东软载波净利下滑44%

10月26日,东软载波最新公布的2018年第三季度报告显示,其营业收入2.19亿元,同比增长3.90...

发表于 2018-11-03 09:32 ? 1408次阅读
元器件成本大涨,东软载波净利下滑44%

备用电源的储存介质有哪些选择?传统选择是电容和电...

首先,任何IC解决方案都会需要一个完整的锂离子电池备用电源管理系统,其必须能够在主电源发生故障时让3...

发表于 2018-10-31 11:40 ? 1451次阅读
备用电源的储存介质有哪些选择?传统选择是电容和电...

主板上的电容、电阻、电子元件都是干嘛的

电脑主板的电子元件包括电容、电阻、电感、二极管、三极管等等,其实这些原件都各有其功能,从而形成一整套...

发表于 2018-10-27 09:50 ? 2964次阅读
主板上的电容、电阻、电子元件都是干嘛的

莱宝高科发布《2018年第三季度报告》实现营业收...

与上年同期相比,预计本期中大尺寸一体化电容式触摸屏全贴合产品销量及销售收入增加、TFT-LCD 产品...

发表于 2018-10-26 15:40 ? 952次阅读
莱宝高科发布《2018年第三季度报告》实现营业收...

电脑主板元件认识视频

主板的生产厂家很多,但不管哪个厂家生产的牌子,其功能基本上是一样的,外形结构也大致相同。下面用图片来...

发表于 2018-10-23 17:28 ? 1998次阅读
电脑主板元件认识视频

如何布局电容才能起到去耦作用

对于噪声敏感的IC电路,为了达到更好的滤波效果,通?;嵫≡袷褂枚喔霾煌葜档牡缛莶⒘绞?,以实现更宽...

发表于 2018-10-22 14:32 ? 861次阅读
如何布局电容才能起到去耦作用

电容补偿柜的作用

电容补偿柜是利用电容的容抗来补偿电感负载的感抗,减少无功电流,补偿发电机无功电流、减轻发电机工作负荷...

发表于 2018-10-18 16:08 ? 2944次阅读
电容补偿柜的作用

电容补偿柜的使用方法

本文介绍了电容补偿柜的使用方法。所谓操作电容补偿装置,是指该装置在运行中的投入像,具体操作时应注意以...

发表于 2018-10-18 16:04 ? 1978次阅读
电容补偿柜的使用方法

电容补偿柜的工作原理

电力系统中的负载类型大部分属于感性负载,加上用电企业普遍广泛地使用电力电子设备,使电网功率因数较低。...

发表于 2018-10-16 16:44 ? 2489次阅读
电容补偿柜的工作原理

详细分析电容的作用和用途

旁路电容:旁路电容,又称为退耦电容,是为某个器件提供能量的储能器件,它利用了电容的频率阻抗特性(理想...

发表于 2018-10-13 10:29 ? 1879次阅读
详细分析电容的作用和用途

为什么有的LED灯关了以后还是会微亮?怎么解决?

开关控制零线,代表了火线直接接在电灯(电容)上了。而火线上具有高电位,如果此时的线路中存在低电位,就...

发表于 2018-10-09 10:13 ? 5323次阅读
为什么有的LED灯关了以后还是会微亮?怎么解决?

电子元器件基础知识讲解

电容容里的大小就是表示能贮存电能的大小,电容对交流信号的阻碍作用称为容抗,它与交流信号的频率和电容里...

发表于 2018-10-09 10:10 ? 3965次阅读
电子元器件基础知识讲解

关于电容滤波的两个要点当心把地上干扰引到器件上

电容在EMC设计中非常重要,也是我们常用的滤波元件!但在我培训的过程中发现,大家对电容的使用并不是很...

发表于 2018-10-07 11:46 ? 934次阅读
关于电容滤波的两个要点当心把地上干扰引到器件上

浅谈大电容滤低频和小电容滤高频之间区别

符合GB、IEC标准,内部单体电容器均附装?;ぷ爸?;当线路或单体电容器发生异常时,该?;ぷ爸媒崃⒓?..

发表于 2018-10-07 11:44 ? 1944次阅读
浅谈大电容滤低频和小电容滤高频之间区别

浅析电子之滤波电容选择

谐波滤波器回路由电容器串联电抗器组成,在某一谐波阶次形成最低阻抗,用以吸收大量谐波电流,电容器的质量...

发表于 2018-10-07 11:43 ? 710次阅读
浅析电子之滤波电容选择

浅谈滤波电容、去耦电容、旁路电容之间区别

电容的功能简单的说就是隔直流通交流,在电路中的电容主要有这几种作用:滤波、去耦、旁路等作用。

发表于 2018-10-07 11:41 ? 1672次阅读
浅谈滤波电容、去耦电容、旁路电容之间区别

浅谈电容在电路中的作用及电容滤波原理

电容器在电子电路中几乎是不可缺少的储能元件,它具有隔断直流、连通交流、阻止低频的特性。

发表于 2018-10-07 11:38 ? 3716次阅读
浅谈电容在电路中的作用及电容滤波原理

电源滤波电容大小对电压的影响

根据全波整流波形,可以看出,输出电压的平滑与电容充放电时间和信号的频率有关系,当信号的频率增大时,输...

发表于 2018-09-29 09:13 ? 3632次阅读
电源滤波电容大小对电压的影响

电容滤波的计算方法及电源滤波电容选用技巧

一般的10PF左右的电容用来滤除高频的干扰信号,0.1UF左右的用来滤除低频的纹波干扰,还可以起到稳...

发表于 2018-09-29 09:06 ? 1925次阅读
电容滤波的计算方法及电源滤波电容选用技巧

电容麦噪音很大的原因和解决方案

麦克是一个传声器,传出的音质和麦克质量关系密切。普通麦和耳机麦音质单调、变异和容易失真,还极容易出电...

发表于 2018-09-28 11:19 ? 5385次阅读
电容麦噪音很大的原因和解决方案

电容式麦克风原理是什么 电容式麦克风怎么使用

电容式麦克风有两块金属极板,其中一块表面涂有驻极体薄膜(多数为聚全氟乙丙烯)并将其接地,另一极板接在...

发表于 2018-09-28 11:12 ? 563次阅读
电容式麦克风原理是什么 电容式麦克风怎么使用

电容麦克风的使用方法介绍

电容式话筒是利用电容大小的变化,将声音信号转化为电信号.这种话筒最为普遍,常见的录音机内置话筒就这种...

发表于 2018-09-28 11:04 ? 1825次阅读
电容麦克风的使用方法介绍

电源的辐射受哪些东西影响?怎么做大功率的EMC?

第四:判断辐射源头位置,一般有几个简单的方法,不一定完全准确,可以参考,输入线套磁环若对EMC有好处...

发表于 2018-09-25 15:34 ? 1261次阅读
电源的辐射受哪些东西影响?怎么做大功率的EMC?
  • 西安七旬老人拄拐到高考志愿咨询会 帮孙子看看报啥学校 2019-04-25
  • 高清希门尼斯头球绝杀 乌拉圭1 2019-04-25
  • 2020年产销整车60万辆以上 汽车之都或成杭州新称号 2019-04-25
  • 人民网评:涉及群众利益的事,必须“马上就办” 2019-04-25
  • 特氏说让日韩买单并没有提中国。你为何把中国加上啊? 2019-04-24
  • 1—5月我省进出口总值1439.7亿元 增速全国第二 2019-04-24
  • 回复@IP比ID好:你的意思是不分老少不分男女不分勤懒不分聪笨……想干啥就干啥?或配置同样多的资源? 2019-04-24
  • 这就是批判的武器和武器的批判 2019-04-23
  • 暖心!高铁列车为他停靠三分钟 这一次没有人反对 2019-04-23
  • 普京总统新任期工作方向曝光 首要任务是这个 2019-04-23
  • 毛泽东说帝国主义都是纸老虎。是有社会基础的 2019-04-22
  • 永济:雨天采摘黄花菜 多元增收过端午 2019-04-22
  • 紫光阁中共中央国家机关工作委员会 2019-04-22
  • 打开水龙头流出“鲜橙多” 南昌县这个小区神了! 2019-04-21
  • 牢牢抓住新时代广东发展的关键重点——三论认真学习贯彻省委十二届四次全会精神 2019-04-21
  • 303| 856| 183| 799| 372| 509| 286| 760| 454| 900|